Book a call

Strategic Enablement

How 3forge approaches AI

Artificial intelligence continues its rapid ascent, reshaping how financial institutions operate and compete. The challenge is not only to harness AI’s potential but to do so in a way that is transparent, compliant, and technically sound. This is where 3forge can help.

Starting with the end in sight

Creating the conditions
for a successful implementation of AI

Despite constraints, CTOs consistently articulate the same ambitions:

  • Shorten development cycles via DevSecOps, CI/CD, automation
  • Consolidate estates by retiring redundant systems and simplifying stacks
  • Build real-time data infrastructure to replace overnight batch with intraday streaming
  • Embed observability to track data lineage, latency, and workflow integrity
  • Architect for elasticity through hybrid cloud and containerization
  • Drive down total cost of ownership through automation, reuse, and architectural efficiency
  • Transform talent models to attract, retrain, and retain modern skills.

These initiatives are the fundamental levers of competitiveness that underpin a successful implementation of AI, because without clean, real-time, governed data, AI cannot function. Without resilient systems, AI-driven workflows introduce risk. Without freed budgets, AI pilots cannot scale.

3forge can help CTOs create the necessary conditions to succeed in AI, using 3 key principles:

Shield the new from the old

Virtualized access to legacy data enables safe AI adoption. Rather than connecting every new AI or analytics workflow directly to legacy systems, CTOs establish a secure, high-performance abstraction layer.

This layer standardizes access to data and services while insulating modern models and pipelines 
from brittle, outdated interfaces.

As a result, AI systems can operate freely and responsibly.

Freedom to innovate

New AI use cases can evolve without repeated legacy rewiring.

Operational stability

Legacy systems remain undisturbed, minimizing the risk of outages or data corruption.

Centralized control

Entitlements, lineage, and monitoring are enforced at a single point, ensuring AI access remains auditable and compliant.

In practice, this means building a real-time data virtualization layer and governed APIs that make legacy “invisible but reliable” while giving AI trusted pathways to institutional data.

Enable a controlled rollout

The second principle is progressive enablement: deploying AI capability in controlled, measurable, and auditable increments that each comply with the requirements for production usage.

Successful AI deployment projects identify bounded domains where AI can safely augment existing workflows, such as trade reconciliation, exception management, or client analytics, secured by industry-standard access and entitlement control, then use those learnings to expand the domain of relevance of AI.

Over time, this compounding approach allows AI to scale responsibly across the enterprise, with every deployment strengthening the fabric of the overall architecture.

Architect for Rapid Scale

The third principle is to ensure that the architecture to support AI is designed for compounding growth. If modernization simply replicates legacy complexity in new form, nothing is gained.

Future-ready architectures share key characteristics:

Event-driven and streaming-first

replace overnight batch with real-time ingestion, processing, and enrichment, ready for real-time AI consumption.

Unified observability

monitor not just uptime, but data lineage, latency, entitlements, and workflow integrity end-to-end.

Elastic by design

use containerization, hybrid cloud, and dynamic scaling to align cost with demand.

Composable front ends

enable rapid dashboard and channel creation without duplicating back-end integration effort.

Governance embedded

build entitlements, audit trails, and compliance hooks into the platform itself, not as afterthoughts.

Together, these principles create the conditions for responsible, scalable AI where innovation can advance quickly without compromising stability, governance, or control.

Partnering for success

3forge MCP: a fully managed access to your data

Built as an extension of 3forge Web, the 3forge MCP server enables AI systems and orchestration frameworks to interact directly with enterprise data and processes in a secure and governed manner.

Similar to REST or headless UI sessions, MCP connections allow external agents to discover 3forge-managed data and schemas, invoke AmiScript methods, including custom logic, and access contextual prompts that assist with user interactions and decision support.

This capability allows AI agents to work within the same trusted boundaries as human users. Every connection, query, and action is subject to the platform’s entitlement model, ensuring that data exposure and execution rights are consistent with established user permissions. Authentication, authorization, and audit trails are applied uniformly, providing transparent oversight of AI-driven activity.

By aligning AI access with existing governance controls, 3forge enables institutions to safely extend their infrastructure to intelligent systems, allowing innovation to advance without weakening compliance or operational discipline.

3forge delivers

A Different Approach
to AI Integration

Most AI integrations begin by extracting data, copying it into external sandboxes or API endpoints where control and context are easily lost. While this can accelerate experimentation, it often fragments governance, duplicates sensitive information, and creates unmonitored access paths. Over time, this erodes confidence in both data quality and compliance.

3forge takes a different approach. Instead of moving data to AI, it brings AI to where the data already lives within a governed, real-time environment. The MCP layer allows AI agents to query, reason, and act inside the same entitlement and audit framework that governs human users. No data leaves the system untracked; every action is authenticated, authorized, and logged.

This architecture ensures that AI adoption strengthens, rather than weakens, institutional control. Teams gain the ability to experiment and deploy AI-driven capabilities quickly, while maintaining the rigor, security, and accountability expected in regulated financial environments.

Partnering for success

It’s time to industrialize AI deployment

As expectations grow and regulatory scrutiny intensifies, the responsibility to deploy AI safely 
and effectively now drives the transition from prototypes to products. 3forge can help by providing 
a unified environment where data, logic, and visualization converge to support enterprise-grade AI initiatives.

3forge is already helping some of the largest financial institutions deploy generative AI safely and effectively.